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Abstract: - Floodkey is a software keyboard in which some keys are increased in size while needless ones are 
decreased. It uses a graph of sites that generates the keys. Each time a key is pressed, according to the probabilities of 
the key to be pressed, the sites are located by the Fruchterman-Reingold algorithm that maintains the topology of the 
keyboard. Then the keyboard appears with no overlapping as a weighted Voronoi diagram. A simulation shows a mean 
increase of 97% and 70% in size for the key to be pressed with and without the Fruchterman-Reingold algorithm. A 
preliminary usability test conducted with and without increasing the keys shows similar performance after 4 sessions of 
3-minutes use. But the users found the combination between the Fruchterman-Reingold algorithm and the weighted 
Voronoi less pleasant. 
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1   Introduction 
Recent years have seen the emergence of mobile 
devices. They are used in various tasks that frequently 
require to enter texts. The availability of touchscreen 
devices has enabled the emergence of new solutions for 
text input: the gesture keyboards and the software 
keyboards. In this paper, we will focus on software 
keyboards that use the concept of keys to enter letters. 
The interaction is usually done by pointing to the keys 
with a finger or a stylus. 
     To facilitate the taping, some works proposed to add 
visual cues helping users to find and to reach the key. 
For example, Raynal et al. proposed new interactions 
based on animation as expanding targets or fisheye view 
[17]. Experiment shows an average gain of 25% of time. 
Results show that distance was 14.85% less with fisheye 
keyboard than standard keyboard. With a linguistic 
model, Magnien et al. proposed to contrast the keys that 
may be selected [15]: the size of the font is proportional 
to the probability of the key to be hit. An empirical 
evaluation shows a theorical gain of 50% for a novice 
user. On a personal assistant, a gain of 60% was 
measured [14]. 
     But to improve the performance of user input, it is 
also possible to consider the motor efficiency of the 
pointing task. With a single pointing device, the pointing 
time T of the user can be modeled by Fitts' law [3]: T =  
a + b× log2 (D / W + 1)). The time to point depends on 
constants a and b that comes from the pointing device. 
But it also depends on the distance between the starting 

point and the target (D in Fitts’ law) and the width of the 
target (W in Fitts’ law). Thus, to improve performance in 
text entry, we can influence the distance between keys 
and the width of the keys. 
     From this law, several improvements have been 
proposed. Static or dynamic rearrangements have been 
introduced to reduce the distance between the keys to 
hit. Likewise, resizing keys has been proposed to 
increase their width. But resizing keys yields the 
problem of overlapping. Indeed, the keys are usually 
glued to each other and inflating some keys leads to 
overlap with the adjacent ones. This raises problems of 
readability and accessibility of these keys. 
     This paper proposes a new approach for resizing keys 
by modelling the keyboard as a Voronoi diagram. 
According to the probabilities of the keys being pressed, 
we move the sites that generate the keys and we apply a 
weighted Voronoi diagram. This principle guarantees the 
non-overlapping of the keys and a key area proportional 
to its probability of being pressed. 
 
 
2   Improving Software Keyboards 
2.1 Distance between keys 
Many works proposed static optimization of « 26 
characters » layout [21][22]. That would decrease the 
input time by reducing the distance covered between 
sequential keystrokes. Experiments prove the gain of 
performance [12]. But an expert user with a standard 
layout becomes novice again with the new layouts. So, 



these software keyboards are confronted to the 
standardization of AZERTY/QWERTY’s family 
keyboards. Because of the learning cost, these new 
layouts do not easily reach the general public. 
     Dynamic reorganization can also be used to reduce 
the distance between keys as with Sibylle [20] and 
FOCL [2][13]: when a key is pressed,  the layout 
changes according to a linguistic model. Theorical 
performance increases significantly but such system can 
disorient the users who can not anticipate the next 
keystroke and must perpetually look for the characters 
among the new character distribution. 
     To solve this problem and to keep the 
AZERTY/QWERTY’s family layouts, Jahveri proposed 
to add local optional menu to a software keyboard [10]. 
Isokoski later re-designed the system, modeled its 
performance and ran two experiments to measure its 
performance [7]. A QWERTY layout was used: after 
putting the stylus onto a key, the user can continue with 
a stroke to eight directions around the key. A marking 
menu [11] is used to display the characters associated to 
the directions. The character of the key would be the first 
character entered and the character associated with the 
direction of the stroke would be the second character 
entered. For the text entry rate, an improvement of 26% 
is expected for expert users with a QWERTY layout [7]. 
     Isokoski’s menu was static. The same menu with the 
vowels, y, backspace and space, is available on every 
key. The rationale is that if the user is to learn the menu 
layout, it cannot change. Learning to efficiently utilize 
the 8 menu items is difficult enough as seen in 
Isokoski’s data. However, further work has suggested to 
add linguistic optimization to the system so that the 
menu would present the most likely characters [18]. This 
proposal is known as KeyGlass. The first level of the 
menu has only 4 items that are displayed as keys 
between the keys. The menu is recursive making it 
possible to enter more than one character with one menu 
selection path. When entering text similar to the text that 
was used to build the prediction database, the stylus 
movements with this design are more efficient than in 
the design by Isokoski. Unfortunately, the number of 
key-menu combinations is large making it difficult to 
learn the menu locations. Expert performance with a soft 
keyboard is so good that systems that rely on visual 
search after each pressing a key probably cannot beat it 
except for special needs. 
 
 
2.2 Size of the keys 
CATKey  proposes to use the Voronoi diagrams for a 
customizable keyboard [5]. In mathematics, a Voronoi 
diagram is a tiling of a metric space determined by 
distances to a specified discrete set of objects. In the 
simplest case, we are given a set of points S in the plane, 

which are the Voronoi sites. Each site s has a Voronoi 
cell, also called a Dirichlet cell, V(s) consisting of all 
points closer to s than to any other site. According to 
this, figure 1 (left) shows the initial tiling of CATKey 
and figure 1 (right) shows the tiling customized statically 
by the user by moving sites. 
 

  
Figure 1. CATKey: the QWERTY layout with a 
Voronoi diagram and the layout customized by a user. 
 
     This solution is static but other methods propose to 
do this dynamically during the taping. While keeping the 
same layout, BigKey increases the size of the 4 keys that 
may be selected [1]. The pointing is easier and the 
scanning time should be reduced for novice users. The 
growth is limited by the layout: a key must not occult 
one neighbour key. 
     To solve this problem, SpreadKey dynamically 
recycles the improbable keys according to a prediction 
system [16]. The remapping of these keys creates 
ambiguous keys used to increase the key size of the most 
probable characters. Figure 2 shows examples of 
remapping of an AZERTY layout. A simple interaction 
enables to disambiguate the keystrokes in case of 
prediction error. 
     The hypothesis of the previous propositions is that a 
user might well prefer to enter text on a known and 
standard character layout. But to increase the size of the 
keys, one solution is also to reduce the number of the 
keys. One way is to display the entire keyboard on 
different pages accessible by tapping on a special key. 
For example the DotNote keyboard uses a 2-page layout 
[12]. The most frequent letters appear on the first page 
and a button allows the failover to the second page. On 
the two half-keyboards, the letters are arranged 
alphabetically. The keyboard is "multitap" because it 
needs two buttons to access to certain letters: one to 
change the page, then the one containing the desired 
letter. With this method, keys are bigger but novice users 
waste time to find characters on the different pages. 
     Reducing the number of keys can also be done by 
combining several characters to a key: it is called 
ambiguous keyboards. Certainly the best known is the 
12-key phone keyboard. Disambiguation can be done 
explicitely. It is usually done by pressing many times the 
same key. But the use of a prediction module can mainly 
automate this process. This can be done at the letter level 
or at the word level word. At the letter level, LetterWise 
[12] or PNLH [6] rearrange the letters of a key to 
propose them in order of probability. At the word level, 



WordWise of Eatoni Ergonomics [12] or T9® of Tegic 
Communications [9] offer one keypress per letter and 
perform a prediction of words after typing punctuation. 
     Many variants have been developed based on 
different groupings and different disambiguation 
techniques.  Another system based on a traditional 
QWERTY layout, TouchPal [19], even offers a mixed 
disambiguation technique. Automatic disambiguation 
works with a linguistic model but the user can 
disambiguate by explicitly shifting to the desired letter. 
 
 
3   FloodKey 
The goal of FloodKey is to offer a resizable keyboard 
that sizes automatically the keys according to their 
probabilities to be pressed: some keys would grow while 
some other ones would shrink to save space and to avoid 
occlusion. Then FloodKey would be less limited by the 
number of resized keys compare to BigKey and the 
occlusion problem would be limited compared to 
SpreadKey. FloodKey is intended to use the standard 
AZERTY/QWERTY layout to ease visual search and to 
ease taping especially at learning stage. Our hypothesis 
remains that a user might well prefer to enter text on a 
known character layout rather than on a new soft 
keyboard where he must sometimes search for a 
character or press several keys to enter one given 
character. 
     As CATKey, FloodKey proposes to use the Voronoi 
diagrams but the tiling is modified dynamically after 
each keypress by sizing the keys according to their 
probabilities to be pressed. For the probabilities, we used 
a 5-grams. The model of N-grams is a technique to 
predict the next letter in a sequence, from N-1 preceding 
letters. As in CATKey, we use the Voronoi diagrams to 
modelize our keyboard. We consider the centre of the 
keys as the sites of a diagram of Voronoi. To modify the 
surface of the keys, we use two techniques: 

• to use a weighted Voronoi diagram; 
• to move the sites. 

     In mathematics, a weighted Voronoi diagram is a 
Voronoi diagram for which the Voronoi cells are defined 
in terms of a distance defined by some common metrics 
modified by weights assigned to the sites. In FloodKey, 
the distance between a point pt and a site s of probability 
p is equal to dist(s, pt) + delta(p) with dist the Euclidean 
distance and delta the following function: 
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with F a constant to tune the magnification. After 
informal testing, the constant F was set to 22. But the 
magnification is limited by the sites: to maintain the 
topology of the keyboard, a site cannot belong to a cell 
of another site, otherwise a key disappear. 

     Then we combine it with moving the sites. We 
considered to use an existing algorithm, the algorithm 
from Fruchterman and Reingold [4]. This algorithm is a 
force-based or force-directed algorithm. Its purpose is to 
position the nodes of a graph in a two dimensional space 
by assigning forces among the set of edges and the set of 
nodes. In FloodKey, we transformed the probabilities in 
stiffness on the edges. The edge between s1 and s2 will 
have a stiffness of 2*Max(delta(p1),delta( p2)) with p1 
and p2 the probabilities of s1 and s2 respectively. The 
entire graph is then simulated as if it were a physical 
system. The forces are applied to the nodes, pulling them 
closer together or pushing them further apart. This is 
repeated iteratively until the system comes to an 
equilibrium state; i.e., their relative positions do not 
change anymore between two iterations. But in our case, 
to ensure a good reactivity of the visual feedback, we do 
not wait the equilibrium. The number of iterations of the 
algorithm was set to 60. The main advantage of this 
algorithm is a high running time but it produces only a 
local minimum.  
     Figure 2 shows our implementation of FloodKey: the 
neighborhood graph (top) and the resulting Voronoi 
diagram (bottom). At the beginning of a word, the 
algorithm of Fruchterman and Reingold is not applied 
and a standard Voronoi diagram is used. The window is 
800x220 pixels. Keys '"', '.' and ',' are 60x60 pixels. Keys 
‘Bsp’, ‘Enter’ and ‘Shift’ are 100x60 pixels and the 
space bar is 800x40 pixels. The dynamic area for letters, 
the hyphen and the apostrophe is 640x180 pixels. 
 

 

 
Figure 2. FloodKey without linguistic information at the 

beginning of a word. 
 
     Figure 3 shows FloodKey after entering "joue". The 
result of the 5-grams model is: n (0.0476), s (0.2619), r 
(0.5238), u (0.0714), m (0.0476) and t (0.0476). The 
other characters have zero probability. The sites moved 
(top) and the surfaces of the keys varie according to their 
probability of being hit (bottom). As visual cues, we 
used a proportional font to the probability as suggested 
in [15]. 
 



 

 
Figure 3. FloodKey after entering “joue”: the graph of 

sites and the resulting weighted Voronoi diagram. 
 
     In addition, we used the same hue (green and blue) to 
visualize the rows of the keyboard despite the shifts of 
the keys. Into these rows, we alternated three different 
lights to distinguish the keys. If a key appears too small 
for the user, a local zoom is usable. While pressing a 
key, the computation of the distance is modified for that 
key and its direct neighbours: the function delta tends to 
0 by an increment of 1 every 150 ms. A surface with a 
probability of zero increases while the others decrease. 
Then, the user can refine his/her selection. 
 
 
4   Simulation 
We conducted a simulation to evaluate the impact of 
FloodKey on the key size. We assume that in most cases 
the size has an effect on the width of the target (W in 
Fitts’ law). We measured the surfaces of the keys in the 
Voronoi condition where the size of the keys do not 
change (V), the weighted Voronoi condition without the 
algorithm of Fruchterman and Reingold (VP) and in the 
weighted Voronoi condition with the algorithm of 
Fruchterman and Reingold (F-VP). This simulation was 
performed with a corpus of 110 French sentences for a 
total of 3144 letters. These sentences included only 
lowercase characters without accents. The distribution of 
word lengths in our corpus was 0.8% for words with one 
letter, 20.7% with two letters, 15.1% with three letters, 
16% with four letters and 47.4% with at least 5 letters. 
This is important for the 5-grams. Each sentence has 
been entered automatically once, letter by letter. 
     Figure 4 shows the results for the surface of the key 
to be pressed. We note S the surface function. The line 
“x = 1” indicates the condition V. A mean increase of 
97% appears with F-VP but only 70% with VP. That 
confirms the validity of applying the algorithm of 
Fruchterman and Reingold to move sites. In only 2.4% 
of cases, the key to hit is smaller than in condition V, ie. 
Ratio < 1. The main reason is a faulty prediction: the 
mean probability of such cases is only 0.07. 
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Figure 4. Ratio for the surface of the key to hit. For 

condition V, the ratio is 1. 
 
     Then we analyzed the surfaces of the keys according 
to their likelihood of being hit. Figure 5 shows the 
results. The line “y = 1” indicates the condition V. The 
condition F-VP appears better than the condition VP in 
all intervals. The variability of the resulting surfaces is 
partly due to the probability intervals that are used on the 
abscissa. The condition F-VP can be approached by a 
linear regression with a good correlation coefficient R² = 
0.93: “y = 0.0844x+1.1432”. The surface increases with 
the probability despite several peaks to explore. 
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Figure 5. Ratio of the surfaces according to the 

probabilities. For condition V, the ratio is 1.  
 
 
5   First Evaluation 
The purpose of this experiment was to perform a reality 
check of the simulation results. To investigate the effects 
of the morphing on the user behaviour we collected data 
on FloodKey in the three conditions used in the 
simulation described before: V, VP and F-VP. Below, we 
describe this experiment in detail. 
 
5.1 Description 
Four participants, two female and two male, participated 
in the experiment. They were all right-handed and 
regular computer users. Each subject completed 4 
sessions of transcription task. Within a session there 
were three three-minute blocks, one for each condition. 
The French sentences to transcribe were chosen 



randomly among the same corpus that was used in the 
simulation before. The sessions were self-scheduled and 
separated by at least two hours, but no more than one 
day. There was no practice before or in between the 
sessions. The order of the conditions was balanced 
between participants and sessions. They were instructed 
to transcribe the sentence as fast as possible while 
correcting errors that they noticed. Correcting errors was 
allowed using the backspace or manipulating the cursor. 
     The experiment was conducted using an Asus R1F 
TabletPC running Windows Vista. The computer had a 
13.3” display with 1280x800 pixel resolution. The size 
of the keyboard was 178 x 49 millimeters. The stylus 
was used to point the keys. FloodKey was coded in C++ 
and the TimTester [8] application displayed the 
sentences, received the input and saved data for later 
analysis. 
     Given the small number of participants, tests for 
statistical significance would have been pointless. Our 
reporting below will be purely descriptive. 
 
5.2 Error rate. 
There were errors left in the transcribed sentences. 
Minimum string distance (MSD) is the number of 
character additions, substitutions, and deletions needed 
to make two strings identical. Even if the MSD of the F-
VP condition yielded to a lower MSD in session 4, 
results are close for all conditions (figure 6 – left). No 
session effect appeared. For all conditions, between 
0.5% and 2% of the characters in the transcribed 
sentences were erroneous. Users have well controlled 
their errors along the evaluation. 
 
5.3 Effort 
Due to errors and corrections participants entered more 
characters (13987) than the presented sentences (13292). 
This extra effort was measured as keystrokes per 
character (KSPC). The KSPC and the standard deviation 
of the F-VP condition decreased over the session and 
yielded to the lower KSPC and standard deviation in 
session 4 (figure 6 - centre). All users performed with a 
very low effort in condition F-VP.  
 

5.4 Text entry rate 
The results for text entry rate are summarized in figure 6 
- right. The text entry rate was computed using the 
transcribed sentences except for the first character of 
each sentence and the “enter” at the end of the sentence 
which were excluded. Time spent on corrections was 
included. One word per minute equals 5 characters 
including spaces. In session 1, dynamic conditions (F 
and F-VP) give lower performance. That shows the 
surprise or difficulties for beginners when the size of the 
keys change especially with the F-VP condition. The 
algorithm of Frushterman and Reingold increases the 
difficulty of use. But a session effect appears with this F-
VP condition that yields to similar performance for the 
three conditions in session 4. Further tests are needed to 
measure performance after the first 12-minutes of use. 
 
5.5 User Impressions 
The end questionnaire consisted of 2 assertions specific 
to conditions VP and F-VP and 3 assertions that were 
common to the three conditions (V, VP and F-VP). The 
users answered from 1 to 5, 1 for a total disagreement 
and 5 for a total agreement. Figure 7 shows the results. 
 

I did few typos

My typing speed
was high

The keyboard is
pleasant to use

V VP F‐VP

 

1 2 3 4 5

The prediction 
is good

The expansion 
of the keys is 
a useful aid

VP / F‐VP

 
Figure 7. Questionnaire results. 

 
     In dynamic conditions, the users found the prediction 
good and the expansion of the keys helpful. In the three 
conditions, they felt to have done few typos which is 
confirmed by the logs. They also felt to be moderately 
fast especially in condition F-VP. That is not confirmed 

Figure 6. The minimum string distance, the keystrokes per character and the text entry rate. 
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by the logs in the last session since the performance is 
equal. Finally, they found the condition V the more 
pleasant but even if the logs do not show differences 
between conditions, they found the condition F-VP the 
least pleasant while logs show similar performance for 
the three conditions in session 4. 
 
 
4   Conclusion and perspectives 
We proposed a new approach for resizing keys by 
modelling the keyboard as a Voronoi diagram. It 
guarantees the non-overlapping of the keys and a key 
area proportional to its probability of being pressed. A 
simulation shows a mean increase of 97% in size for the 
key to be pressed. A preliminary test conducted with 
novice users doesn’t show any improvement when the 
keys growth after 4 sessions of 3-minutes copy task. But 
the learning effect seems to favor FloodKey which must 
be confirmed by a longitudinal study. 
     For the future, we plan to enhance the algorithm that 
moves the sites and the distance computation in the 
weighted Voronoi diagram. Another way of 
improvement is to study other tilings as the TreeMap. 
Finally, users seemed disturbed by the dynamic of the 
keyboard: we must think about techniques to offer 
smoother transition between layouts. 
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