
FloodKey: increasing software keyboard keys by reducing needless ones
without occultation

Geoffroy AULAGNER, Romain FRANÇOIS,

Benoît MARTIN, Dominique MICHEL
Mathieu RAYNAL

LITA – UFR MIM
Université Paul Verlaine - Metz

Ile du Saulcy, BP 80794, 57012 Metz cedex
FRANCE

{benoit.martin, dmic}@univ-metz.fr

IRIT – équipe IHCS
Université Paul Sabatier
31062 Toulouse Cedex 9

FRANCE
raynal@irit.fr

Abstract: - Floodkey is a software keyboard in which some keys are increased in size while needless ones are
decreased. It uses a graph of sites that generates the keys. Each time a key is pressed, according to the probabilities of
the key to be pressed, the sites are located by the Fruchterman-Reingold algorithm that maintains the topology of the
keyboard. Then the keyboard appears with no overlapping as a weighted Voronoi diagram. A simulation shows a mean
increase of 97% and 70% in size for the key to be pressed with and without the Fruchterman-Reingold algorithm. A
preliminary usability test conducted with and without increasing the keys shows similar performance after 4 sessions of
3-minutes use. But the users found the combination between the Fruchterman-Reingold algorithm and the weighted
Voronoi less pleasant.

Key-Words: - Text input, Software keyboards, Fitts’ law, prediction system.

1 Introduction
Recent years have seen the emergence of mobile
devices. They are used in various tasks that frequently
require to enter texts. The availability of touchscreen
devices has enabled the emergence of new solutions for
text input: the gesture keyboards and the software
keyboards. In this paper, we will focus on software
keyboards that use the concept of keys to enter letters.
The interaction is usually done by pointing to the keys
with a finger or a stylus.
 To facilitate the taping, some works proposed to add
visual cues helping users to find and to reach the key.
For example, Raynal et al. proposed new interactions
based on animation as expanding targets or fisheye view
[17]. Experiment shows an average gain of 25% of time.
Results show that distance was 14.85% less with fisheye
keyboard than standard keyboard. With a linguistic
model, Magnien et al. proposed to contrast the keys that
may be selected [15]: the size of the font is proportional
to the probability of the key to be hit. An empirical
evaluation shows a theorical gain of 50% for a novice
user. On a personal assistant, a gain of 60% was
measured [14].
 But to improve the performance of user input, it is
also possible to consider the motor efficiency of the
pointing task. With a single pointing device, the pointing
time T of the user can be modeled by Fitts' law [3]: T =
a + b× log2 (D / W + 1)). The time to point depends on
constants a and b that comes from the pointing device.
But it also depends on the distance between the starting

point and the target (D in Fitts’ law) and the width of the
target (W in Fitts’ law). Thus, to improve performance in
text entry, we can influence the distance between keys
and the width of the keys.
 From this law, several improvements have been
proposed. Static or dynamic rearrangements have been
introduced to reduce the distance between the keys to
hit. Likewise, resizing keys has been proposed to
increase their width. But resizing keys yields the
problem of overlapping. Indeed, the keys are usually
glued to each other and inflating some keys leads to
overlap with the adjacent ones. This raises problems of
readability and accessibility of these keys.
 This paper proposes a new approach for resizing keys
by modelling the keyboard as a Voronoi diagram.
According to the probabilities of the keys being pressed,
we move the sites that generate the keys and we apply a
weighted Voronoi diagram. This principle guarantees the
non-overlapping of the keys and a key area proportional
to its probability of being pressed.

2 Improving Software Keyboards
2.1 Distance between keys
Many works proposed static optimization of « 26
characters » layout [21][22]. That would decrease the
input time by reducing the distance covered between
sequential keystrokes. Experiments prove the gain of
performance [12]. But an expert user with a standard
layout becomes novice again with the new layouts. So,

these software keyboards are confronted to the
standardization of AZERTY/QWERTY’s family
keyboards. Because of the learning cost, these new
layouts do not easily reach the general public.
 Dynamic reorganization can also be used to reduce
the distance between keys as with Sibylle [20] and
FOCL [2][13]: when a key is pressed, the layout
changes according to a linguistic model. Theorical
performance increases significantly but such system can
disorient the users who can not anticipate the next
keystroke and must perpetually look for the characters
among the new character distribution.
 To solve this problem and to keep the
AZERTY/QWERTY’s family layouts, Jahveri proposed
to add local optional menu to a software keyboard [10].
Isokoski later re-designed the system, modeled its
performance and ran two experiments to measure its
performance [7]. A QWERTY layout was used: after
putting the stylus onto a key, the user can continue with
a stroke to eight directions around the key. A marking
menu [11] is used to display the characters associated to
the directions. The character of the key would be the first
character entered and the character associated with the
direction of the stroke would be the second character
entered. For the text entry rate, an improvement of 26%
is expected for expert users with a QWERTY layout [7].
 Isokoski’s menu was static. The same menu with the
vowels, y, backspace and space, is available on every
key. The rationale is that if the user is to learn the menu
layout, it cannot change. Learning to efficiently utilize
the 8 menu items is difficult enough as seen in
Isokoski’s data. However, further work has suggested to
add linguistic optimization to the system so that the
menu would present the most likely characters [18]. This
proposal is known as KeyGlass. The first level of the
menu has only 4 items that are displayed as keys
between the keys. The menu is recursive making it
possible to enter more than one character with one menu
selection path. When entering text similar to the text that
was used to build the prediction database, the stylus
movements with this design are more efficient than in
the design by Isokoski. Unfortunately, the number of
key-menu combinations is large making it difficult to
learn the menu locations. Expert performance with a soft
keyboard is so good that systems that rely on visual
search after each pressing a key probably cannot beat it
except for special needs.

2.2 Size of the keys
CATKey proposes to use the Voronoi diagrams for a
customizable keyboard [5]. In mathematics, a Voronoi
diagram is a tiling of a metric space determined by
distances to a specified discrete set of objects. In the
simplest case, we are given a set of points S in the plane,

which are the Voronoi sites. Each site s has a Voronoi
cell, also called a Dirichlet cell, V(s) consisting of all
points closer to s than to any other site. According to
this, figure 1 (left) shows the initial tiling of CATKey
and figure 1 (right) shows the tiling customized statically
by the user by moving sites.

Figure 1. CATKey: the QWERTY layout with a
Voronoi diagram and the layout customized by a user.

 This solution is static but other methods propose to
do this dynamically during the taping. While keeping the
same layout, BigKey increases the size of the 4 keys that
may be selected [1]. The pointing is easier and the
scanning time should be reduced for novice users. The
growth is limited by the layout: a key must not occult
one neighbour key.
 To solve this problem, SpreadKey dynamically
recycles the improbable keys according to a prediction
system [16]. The remapping of these keys creates
ambiguous keys used to increase the key size of the most
probable characters. Figure 2 shows examples of
remapping of an AZERTY layout. A simple interaction
enables to disambiguate the keystrokes in case of
prediction error.
 The hypothesis of the previous propositions is that a
user might well prefer to enter text on a known and
standard character layout. But to increase the size of the
keys, one solution is also to reduce the number of the
keys. One way is to display the entire keyboard on
different pages accessible by tapping on a special key.
For example the DotNote keyboard uses a 2-page layout
[12]. The most frequent letters appear on the first page
and a button allows the failover to the second page. On
the two half-keyboards, the letters are arranged
alphabetically. The keyboard is "multitap" because it
needs two buttons to access to certain letters: one to
change the page, then the one containing the desired
letter. With this method, keys are bigger but novice users
waste time to find characters on the different pages.
 Reducing the number of keys can also be done by
combining several characters to a key: it is called
ambiguous keyboards. Certainly the best known is the
12-key phone keyboard. Disambiguation can be done
explicitely. It is usually done by pressing many times the
same key. But the use of a prediction module can mainly
automate this process. This can be done at the letter level
or at the word level word. At the letter level, LetterWise
[12] or PNLH [6] rearrange the letters of a key to
propose them in order of probability. At the word level,

WordWise of Eatoni Ergonomics [12] or T9® of Tegic
Communications [9] offer one keypress per letter and
perform a prediction of words after typing punctuation.
 Many variants have been developed based on
different groupings and different disambiguation
techniques. Another system based on a traditional
QWERTY layout, TouchPal [19], even offers a mixed
disambiguation technique. Automatic disambiguation
works with a linguistic model but the user can
disambiguate by explicitly shifting to the desired letter.

3 FloodKey
The goal of FloodKey is to offer a resizable keyboard
that sizes automatically the keys according to their
probabilities to be pressed: some keys would grow while
some other ones would shrink to save space and to avoid
occlusion. Then FloodKey would be less limited by the
number of resized keys compare to BigKey and the
occlusion problem would be limited compared to
SpreadKey. FloodKey is intended to use the standard
AZERTY/QWERTY layout to ease visual search and to
ease taping especially at learning stage. Our hypothesis
remains that a user might well prefer to enter text on a
known character layout rather than on a new soft
keyboard where he must sometimes search for a
character or press several keys to enter one given
character.
 As CATKey, FloodKey proposes to use the Voronoi
diagrams but the tiling is modified dynamically after
each keypress by sizing the keys according to their
probabilities to be pressed. For the probabilities, we used
a 5-grams. The model of N-grams is a technique to
predict the next letter in a sequence, from N-1 preceding
letters. As in CATKey, we use the Voronoi diagrams to
modelize our keyboard. We consider the centre of the
keys as the sites of a diagram of Voronoi. To modify the
surface of the keys, we use two techniques:

• to use a weighted Voronoi diagram;
• to move the sites.

 In mathematics, a weighted Voronoi diagram is a
Voronoi diagram for which the Voronoi cells are defined
in terms of a distance defined by some common metrics
modified by weights assigned to the sites. In FloodKey,
the distance between a point pt and a site s of probability
p is equal to dist(s, pt) + delta(p) with dist the Euclidean
distance and delta the following function:

⎩
⎨
⎧

=
>−

→
0if

0if*
:

pF
pFp

pdelta

with F a constant to tune the magnification. After
informal testing, the constant F was set to 22. But the
magnification is limited by the sites: to maintain the
topology of the keyboard, a site cannot belong to a cell
of another site, otherwise a key disappear.

 Then we combine it with moving the sites. We
considered to use an existing algorithm, the algorithm
from Fruchterman and Reingold [4]. This algorithm is a
force-based or force-directed algorithm. Its purpose is to
position the nodes of a graph in a two dimensional space
by assigning forces among the set of edges and the set of
nodes. In FloodKey, we transformed the probabilities in
stiffness on the edges. The edge between s1 and s2 will
have a stiffness of 2*Max(delta(p1),delta(p2)) with p1
and p2 the probabilities of s1 and s2 respectively. The
entire graph is then simulated as if it were a physical
system. The forces are applied to the nodes, pulling them
closer together or pushing them further apart. This is
repeated iteratively until the system comes to an
equilibrium state; i.e., their relative positions do not
change anymore between two iterations. But in our case,
to ensure a good reactivity of the visual feedback, we do
not wait the equilibrium. The number of iterations of the
algorithm was set to 60. The main advantage of this
algorithm is a high running time but it produces only a
local minimum.
 Figure 2 shows our implementation of FloodKey: the
neighborhood graph (top) and the resulting Voronoi
diagram (bottom). At the beginning of a word, the
algorithm of Fruchterman and Reingold is not applied
and a standard Voronoi diagram is used. The window is
800x220 pixels. Keys '"', '.' and ',' are 60x60 pixels. Keys
‘Bsp’, ‘Enter’ and ‘Shift’ are 100x60 pixels and the
space bar is 800x40 pixels. The dynamic area for letters,
the hyphen and the apostrophe is 640x180 pixels.

Figure 2. FloodKey without linguistic information at the

beginning of a word.

 Figure 3 shows FloodKey after entering "joue". The
result of the 5-grams model is: n (0.0476), s (0.2619), r
(0.5238), u (0.0714), m (0.0476) and t (0.0476). The
other characters have zero probability. The sites moved
(top) and the surfaces of the keys varie according to their
probability of being hit (bottom). As visual cues, we
used a proportional font to the probability as suggested
in [15].

Figure 3. FloodKey after entering “joue”: the graph of

sites and the resulting weighted Voronoi diagram.

 In addition, we used the same hue (green and blue) to
visualize the rows of the keyboard despite the shifts of
the keys. Into these rows, we alternated three different
lights to distinguish the keys. If a key appears too small
for the user, a local zoom is usable. While pressing a
key, the computation of the distance is modified for that
key and its direct neighbours: the function delta tends to
0 by an increment of 1 every 150 ms. A surface with a
probability of zero increases while the others decrease.
Then, the user can refine his/her selection.

4 Simulation
We conducted a simulation to evaluate the impact of
FloodKey on the key size. We assume that in most cases
the size has an effect on the width of the target (W in
Fitts’ law). We measured the surfaces of the keys in the
Voronoi condition where the size of the keys do not
change (V), the weighted Voronoi condition without the
algorithm of Fruchterman and Reingold (VP) and in the
weighted Voronoi condition with the algorithm of
Fruchterman and Reingold (F-VP). This simulation was
performed with a corpus of 110 French sentences for a
total of 3144 letters. These sentences included only
lowercase characters without accents. The distribution of
word lengths in our corpus was 0.8% for words with one
letter, 20.7% with two letters, 15.1% with three letters,
16% with four letters and 47.4% with at least 5 letters.
This is important for the 5-grams. Each sentence has
been entered automatically once, letter by letter.
 Figure 4 shows the results for the surface of the key
to be pressed. We note S the surface function. The line
“x = 1” indicates the condition V. A mean increase of
97% appears with F-VP but only 70% with VP. That
confirms the validity of applying the algorithm of
Fruchterman and Reingold to move sites. In only 2.4%
of cases, the key to hit is smaller than in condition V, ie.
Ratio < 1. The main reason is a faulty prediction: the
mean probability of such cases is only 0.07.

0 1 2 3 4
Ratio S / S(V)

F‐VP VP

Figure 4. Ratio for the surface of the key to hit. For

condition V, the ratio is 1.

 Then we analyzed the surfaces of the keys according
to their likelihood of being hit. Figure 5 shows the
results. The line “y = 1” indicates the condition V. The
condition F-VP appears better than the condition VP in
all intervals. The variability of the resulting surfaces is
partly due to the probability intervals that are used on the
abscissa. The condition F-VP can be approached by a
linear regression with a good correlation coefficient R² =
0.93: “y = 0.0844x+1.1432”. The surface increases with
the probability despite several peaks to explore.

y = 0,0844x + 1,1432

R2 = 0,9333

0

0,5

1

1,5

2

2,5

3

3,5

4

[0;0.05[

[0.1;0.15[

[0.2;0.25[

[0.3;0.35[

[0.4;0.45[

[0.5;0.55[

[0.6;0.65[

[0.7;0.75[

[0.8;0.85[

[0.9;0.95[

Probabilities

Ra
ti
o
S
/
S(
V
)
 a

F‐VP VP Linear (F‐VP)

Figure 5. Ratio of the surfaces according to the

probabilities. For condition V, the ratio is 1.

5 First Evaluation
The purpose of this experiment was to perform a reality
check of the simulation results. To investigate the effects
of the morphing on the user behaviour we collected data
on FloodKey in the three conditions used in the
simulation described before: V, VP and F-VP. Below, we
describe this experiment in detail.

5.1 Description
Four participants, two female and two male, participated
in the experiment. They were all right-handed and
regular computer users. Each subject completed 4
sessions of transcription task. Within a session there
were three three-minute blocks, one for each condition.
The French sentences to transcribe were chosen

randomly among the same corpus that was used in the
simulation before. The sessions were self-scheduled and
separated by at least two hours, but no more than one
day. There was no practice before or in between the
sessions. The order of the conditions was balanced
between participants and sessions. They were instructed
to transcribe the sentence as fast as possible while
correcting errors that they noticed. Correcting errors was
allowed using the backspace or manipulating the cursor.
 The experiment was conducted using an Asus R1F
TabletPC running Windows Vista. The computer had a
13.3” display with 1280x800 pixel resolution. The size
of the keyboard was 178 x 49 millimeters. The stylus
was used to point the keys. FloodKey was coded in C++
and the TimTester [8] application displayed the
sentences, received the input and saved data for later
analysis.
 Given the small number of participants, tests for
statistical significance would have been pointless. Our
reporting below will be purely descriptive.

5.2 Error rate.
There were errors left in the transcribed sentences.
Minimum string distance (MSD) is the number of
character additions, substitutions, and deletions needed
to make two strings identical. Even if the MSD of the F-
VP condition yielded to a lower MSD in session 4,
results are close for all conditions (figure 6 – left). No
session effect appeared. For all conditions, between
0.5% and 2% of the characters in the transcribed
sentences were erroneous. Users have well controlled
their errors along the evaluation.

5.3 Effort
Due to errors and corrections participants entered more
characters (13987) than the presented sentences (13292).
This extra effort was measured as keystrokes per
character (KSPC). The KSPC and the standard deviation
of the F-VP condition decreased over the session and
yielded to the lower KSPC and standard deviation in
session 4 (figure 6 - centre). All users performed with a
very low effort in condition F-VP.

5.4 Text entry rate
The results for text entry rate are summarized in figure 6
- right. The text entry rate was computed using the
transcribed sentences except for the first character of
each sentence and the “enter” at the end of the sentence
which were excluded. Time spent on corrections was
included. One word per minute equals 5 characters
including spaces. In session 1, dynamic conditions (F
and F-VP) give lower performance. That shows the
surprise or difficulties for beginners when the size of the
keys change especially with the F-VP condition. The
algorithm of Frushterman and Reingold increases the
difficulty of use. But a session effect appears with this F-
VP condition that yields to similar performance for the
three conditions in session 4. Further tests are needed to
measure performance after the first 12-minutes of use.

5.5 User Impressions
The end questionnaire consisted of 2 assertions specific
to conditions VP and F-VP and 3 assertions that were
common to the three conditions (V, VP and F-VP). The
users answered from 1 to 5, 1 for a total disagreement
and 5 for a total agreement. Figure 7 shows the results.

I did few typos

My typing speed
was high

The keyboard is
pleasant to use

V VP F‐VP

1 2 3 4 5

The prediction
is good

The expansion
of the keys is
a useful aid

VP / F‐VP

Figure 7. Questionnaire results.

 In dynamic conditions, the users found the prediction
good and the expansion of the keys helpful. In the three
conditions, they felt to have done few typos which is
confirmed by the logs. They also felt to be moderately
fast especially in condition F-VP. That is not confirmed

Figure 6. The minimum string distance, the keystrokes per character and the text entry rate.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4
Session

M
SD

 a

1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4
Session

KS
PC

 a

V VP F‐VP

10

14

18

22

26

30

1 2 3 4
Session

W
PM

 a

by the logs in the last session since the performance is
equal. Finally, they found the condition V the more
pleasant but even if the logs do not show differences
between conditions, they found the condition F-VP the
least pleasant while logs show similar performance for
the three conditions in session 4.

4 Conclusion and perspectives
We proposed a new approach for resizing keys by
modelling the keyboard as a Voronoi diagram. It
guarantees the non-overlapping of the keys and a key
area proportional to its probability of being pressed. A
simulation shows a mean increase of 97% in size for the
key to be pressed. A preliminary test conducted with
novice users doesn’t show any improvement when the
keys growth after 4 sessions of 3-minutes copy task. But
the learning effect seems to favor FloodKey which must
be confirmed by a longitudinal study.
 For the future, we plan to enhance the algorithm that
moves the sites and the distance computation in the
weighted Voronoi diagram. Another way of
improvement is to study other tilings as the TreeMap.
Finally, users seemed disturbed by the dynamic of the
keyboard: we must think about techniques to offer
smoother transition between layouts.

References:
[1] Al Faraj, K., Mojahid, M. and Vigouroux N.

BigKey: A Virtual Keyboard for Mobile Devices. In
Proc. of HCII 2009, Springer-Verlag, LNCS, 2009,
pp 3-10.

[2] Bellman, T. and MacKenzie, I.S. A probabilistic
character layout strategy for mobile text entry. In
Proc. of GI’98, 1998, pp 168-176.

[3] Fitts, P.M. The information capacity of the human
motor system in controlling the amplitude of
movement. Journal of Experimental Psychology,
1954.

[4] Fruchterman, T. M. and Reingold, E. M. Graph
drawing by force-directed placement. Softw. Pract.
Exper. 21 (11), 1991, pp 1129-1164.

[5] Go, K. and Endo Y. CATKey: Customizable and
Adaptable Touchscreen Keyboard with Bubble
Cursor-Like Visual Feedback. In Proc. of
INTERACT 2007, LNCS, 2007, pp 493-496.

[6] Gong, J., Haggerty, B., and Tarasewich, P. An
enhanced multitap text entry method with predictive
next-letter highlighting. In Proc. of CHI'05
Extended Abstracts, ACM Press, 2005, pp 1399-
1402.

[7] Isokoski, P. Performance of menu-augmented soft
keyboards. In Proc. of CHI 2004, CHI Letters, 6(1),
2004, pp 423-430.

[8] Isokoski, P., Text entry test package,
http://www.cs.uta.fi/~poika/downloads.php

[9] James, C. and Longé, M. Bringing text input
beyond the desktop. In Proc. of CHI '00 Extended
Abstracts, ACM Press, 2000, pp 49-50.

[10] Jhaveri, N. Two Characters per Stroke – A Novel
Pen-Based Text Input Technique. In G. Evreinov
(ed.), New Interaction Techniques’03, Spring,
University of Tampere Finland, 2003, pp 10-15.
www.cs.uta.fi/reports/bsarja/B-2003-5.pdf

[11] Kurtenbach, G., and Buxton, W. The limits of
expert performance using hierarchic marking
menus. In Proc. of INTERCHI 1993, ACM Press,
1993, 482-487.

[12] MacKenzie, I. S., and Soukoreff, R. W. Text entry
for mobile computing: Models and methods, theory
and practice. In Human-Computer Interaction, Vol.
17, 2002, pp 147-198.

[13] MacKenzie, I. S. Mobile text entry using three keys.
In Proc. of NordiCHI 2002, 2002, pp 27-34.

[14] Magnien, L., Bouraoui, J. L. and Vigouroux, N.
Mobile devices: soft keyboard text-entry enhanced
by Visual Cues. In Proc. of UbiMob '04, ACM
Press, 2004, pp 158-165.

[15] Magnien, L., Bouraoui, J-L. and Vella, F.
Utilisation d'indices visuels pour l'aide à la saisie
de texte sur PDA. In Proc. of IHM 2003, ACM
Press, 2003, pp 252-255.

[16] Merlin, B. and Raynal, M. SpreadKey: increasing
software keyboard key by recycling needless ones.
In Proc. of AAATE 2009, IOS Press, 2009, pp 138-
143.

[17] Raynal, M. and Truillet P. Fisheye Keyboard:
Whole Keyboard Displayed on PDA. In Proc. of
HCII 2007, LNCS, 2007, pp 452-459.

[18] Raynal, M. and Vigouroux, N. KeyGlasses: Semi-
transparent keys to optimize text input on virtual
keyboard. In Proc. of AAATE 2005, 2005, pp 713-
717.

[19] TouchPal. Available at: http://www.cootek.com/
[20] Wandmacher, T., Antoine, J-Y. and Poirier, F.

SIBYLLE: A System for Alternative Communication
Adapting to the Context and Its User. In Proc. of
ASSETS’07, 2007, pp 203-210

[21] Zhai, S., Hunter, M. and Smith, B.A. Performance
Optimization of Virtual Keyboards. Human-
Computer Interaction, Vol 17 (2&3), 2002, pp 229-
269.

[22] Zhai, S., Hunter, M. and Smith, B.A. The
Metropolis Keyboard - an exploration of
quantitative techniques for virtual keyboard design.
In Proc. of UIST’00, 2000, pp 119-128.

