
Semantic Keyboard: Fast Movements

between Keys of a Soft Keyboard

Mathieu Raynal1, I. Scott MacKenzie2, and Bruno Merlin3

1 IRIT – ELIPSE Team, University of Toulouse, Toulouse, France
mathieu.raynal@irit.fr

2 Department of Electrical Engineering & Computer Science, York University,
Toronto, Canada

mack@cse.yorku.ca
3 Universidade Federal do Pará, Cametá, Brasil

brunomerlin@ufpa.br

Abstract. In this paper we describe Semantic Keyboard: a soft key-
board augmented by semantic pointing. The cursor crosses faster over
keys containing low-probability letters (considering the prefix already en-
tered). This optimization reduces the movement of the pointer by 60%,
and increases the text entry speed by 13.5% after the first character in
a word. Accuracy is equivalent to a regular soft keyboard.

Keywords: Soft Keyboard, Text Entry, Character Prediction.

1 Introduction

Highly used since the emergence of mobile phones with touch screens, soft key-
boards were originally designed to enable people with motor disabilities to access
computers. The basic soft keyboard imitates a physical keyboard. Motor-disabled
people use it with an adapted pointing device. However, the use of a single pointer
slows text input. In addition, repetitive movements between keys tire the user
quickly.

To solve these problems, several solutions have been explored. Many take
advantage of letter co-occurrence (aka digram) statistics in the language. They
typically lead to a static or dynamic reorganization of the keyboard or other
improvements considering co-occurrence. A well known technique is to provide a
completion list [2],[7] to reduce the number of actions to input a word. However,
every solution is a compromise: New layouts are hard to learn; dynamic changes
increase cognitive load and completion lists are often used inefficiently.

Our goal is to dynamically exploit language statistics to improve typing per-
formance without adding visual changes that disturb the user. The aim is to
reduce key pointing time while maintaining the accuracy of pointing. Our sys-
tem is useful when using a soft keyboard with any device that manipulates a
pointer on the screen. Consequently, our main end users are motor-impaired
persons. In this report, we present our system and an initial evaluation with
able-bodied users which confirms our hypothesis. A use-case with end users is
ongoing; those results will be presented in a final report.

K. Miesenberger et al. (Eds.): ICCHP 2014, Part II, LNCS 8548, pp. 195–202, 2014.
c© Springer International Publishing Switzerland 2014



196 M. Raynal, I.S. MacKenzie, and B. Merlin

2 Use of Character Prediction Systems

Entering text with a standard soft keyboard through a single pointing device
corresponds to pointing to keys one by one. The task can be modeled by Fitts’
law [4]. Toward this, two solutions are possible to increase text input speed:
reducing the distance between the keys or expanding the keys.

The first solution involves switching the layout to reduce the distance between
the most frequent co-occurrences [6],[9],[13]. However, a new letter arrangement
imposes a learning period which often discourages the user. Therefore, this so-
lution is rarely used.

Also, while this solution works well for common co-occurrences, it is less effec-
tive for infrequent co-occurrences. To improve optimization whatever the input
letter, it is important use a dynamic prediction system. In 80% of cases, the
desired letter is among the four most probable to be typed [10]. This statistic
increases as the length of the prefix increases: Likely letters are more numerous
and therefore more predictable. Two strategies simplify pointing for the most
probable letters. The first is to dynamically change the letter arrangement (key
position) and size during input [1],[8]. The second is to introduce additional keys
near the pointer [10] that contain the most likely letters.

However, these solutions have limits: Dynamic changes in the layout induce a
cognitive cost. It is tiring for the user and it adversely impacts performance. So,
in the end, input speed is not improved with these keyboards. Similarly, when
new GUI elements appear, visual scanning time increases and text input speed
is reduced.

Consequently, to benefit from prediction without changing the appearance of
the standard keyboard, we propose to dynamically modify the pointer speed
according to the probability of typing the crossed-over keys.

3 Semantic Keyboard

3.1 Principle

Our Semantic Keyboard is based on the paradigm of semantic pointing [3]:
that is, separating the visual space and motor space. The interface retains the
same visual appearance. However, every object occupies a different area in the
motor space. The size of the area depends on the object’s importance in the
interaction context. In our Semantic Keyboard, visual space is the soft keyboard
and motor space is represented through the pointing device. Keys bearing letters
with low probability get less emphasis in the motor space: The pointer will
quickly cross over them. Conversely, keys bearing letters with high probability
get more emphasis in the motor space: The cursor dwells longer.

Specifically, the idea is to accelerate the cursor when it passes over keys dis-
playing letters with low probability and, reciprocally, to lower the cursor velocity
when passing over keys containing letters with high probability. Thus, the user
should more quickly access letters of interest while still maintaining the possi-
bility of inputting other letters. But, at the same time, the visual aspect of the
keyboard remains unchanged.



Semantic Keyboard: Fast Movements between Keys of a Soft Keyboard 197

3.2 Implementation

Our Semantic Keyboard uses a character prediction system based on a lexical
tree [2]. When the user enters a prefix, the prediction system classifies letters
by their probability of occurrence and then associates an enlargement coefficient
with each key. With the enlargement coefficient, the pointer will accelerate or
slow down.

Each key Ki has a coefficient Ci between 1 and N . N is the maximum value
of acceleration. Ci is calculated from the character frequency Fi of the key Ki.
The character frequency Fi is calculated from the prefix already entered:

Ci = Fi ×N and

NB∑

i=1

Fi = 1,with NB the number of keys (1)

When the pointer passes over the keyboard, it may cross neighboring keys with
different probabilities. To avoid dramatic speed variations, the acceleration co-
efficient applied to the pointer depends on the position of the pointer on the
key. If the pointer is close to another key, the coefficient is calculated according
to the coefficient of the closest keys and the distance separating the center of
neighboring keys and the pointer. Di is the distance between the pointer position
and the center of the nearest key. Wi is the size of the key:

C =

⎧
⎪⎨

⎪⎩

Ci if Di < MAX

∑NB Keys
j=1 Dj×Cj
∑NB Keys

j=1 Dj

(2)

NB Keys is the number of the nearest keys included in the calculation and
MAX the maximum distance from the center of the key on which the coefficient
remains unchanged. After this maximum distance, the coefficient is weighted by
the coefficients of nearby keys.

Thanks to this coefficient, the pointer position is:

P = Pold + ((Pnew–Pold)× C × Speed) (3)

Pold is the old pointer position and Pnew is the new one before the addition of
the acceleration.

After each character input, the probabilities of character occurrence are re-
calculated and keys are resized (in the motor space).

4 Method

4.1 Hypothesis

To test our Semantic Keyboard, we conducted an experiment comparing the
Semantic Keyboard with a typical AZERTY keyboard. The two main hypothe-
ses were that semantic pointing would decrease the distance travelled by the
cursor of the pointing device and lightly improve user performance. We define
performance as text input speed and accuracy.



198 M. Raynal, I.S. MacKenzie, and B. Merlin

4.2 Participants

Twelve able-bodied participants, two females and ten males, took part in the
experiment. They ranged in age from 21 to 44 (mean = 28.6, SD = 6.15). All
were volunteers, right-handers, and computer specialists. All participants were
regular users of desktop computers and were acquainted with pointing devices.

4.3 Apparatus

The experiment was conducted using a Dell laptop with 2.5 GHz speed and the
Microsoft Windows 7 operating system. Participants interacted with the soft
keyboard through a mouse. Keyboard layouts were restricted to the 26 characters
of the Latin alphabet and the space bar. The soft keyboard was developed in
Java SE 6.

4.4 Procedure

Participants entered 21 sentences with the both keyboards. They were instructed
to enter the sentences as quickly as possible. The sentence to copy was presented
on a line, and the text input by the participant appeared on the line below. Text
entry errors were not displayed on the screen. Instead, there was visual and
auditory feedback signaling the error. The cursor did not move until the par-
ticipant entered the correct character. At the end of each sentence, participants
hit the Space bar. After the experiment, participants were asked to complete a
questionnaire soliciting demographic information and impressions on the both
keyboards.

4.5 Design

A repeated-measures design was used. There was a single factor, keyboard, with
two levels: AZERTY and Semantic Keyboard. Participants were randomly
assigned to two groups of six. In the first group, participants began with the AZ-
ERTY keyboard and ended with the Semantic Keyboard. The order was coun-
terbalanced by groups. For each keyboard, participants entered 21 sentences. The
sentences were chosen randomly from a set of 50.

The sentences contained common words and were statistically representative
of the participants’ language, which was French (respecting the frequency of
bigrams and trigrams). The dependant variables were the distance travelled by
the cursor, text entry speed, and accuracy.

5 Results and Discussion

A statistical analysis showed that the order in which the exercises were performed
had no impact on the results (F1,10 = 0.059, p = .81). Thus, counterbalancing
had the desired effect.



Semantic Keyboard: Fast Movements between Keys of a Soft Keyboard 199

5.1 Distance

The distance covered by the pointer in the motor space (in pixels) was computed
for both keyboards. The results show that distance was 60% less with the Se-
mantic Keyboard than with the AZERTY keyboard. The mean distance covered
by the pointer to point to a key was 225 pixels with AZERTY compared to 90
pixels with the Semantic Keyboard. The difference was statistically significant
(F1,10 = 2721.5, p < .001).

5.2 Entry Speed

Entry speed was computed two ways. First, we computed the text entry speed per
sentence. This was calculated by dividing the length of the sentence (including
the space character between words and at the end of a sentence) by the time
(in seconds) to enter this sentence. Finally, this speed in characters per second
(cps) is multiplied by sixty and divided by five to obtain the speed in words per
minute (wpm) [12].

The input speed was almost equivalent for the two keyboards: 10.30 wpm
versus 10.43 wpm (F1,10 = 0.223, p = .65). Interviews with participants after
the experiment helped to identify potential issues: Several participants described
being confused by the Semantic Keyboard at the beginning of words. Indeed,
the prediction system predicts the probability of each character after a prefix
is already entered. Thus, for the first character, Semantic keyboard offers no
acceleration factor, which bothered some participants.

To verify this, entry speed was recalculated taking into account only the words.
Entry time was calculated between the first character of the word and pressing
the Space bar at the end of the word. The number of characters here is the
length of the word. With this method of calculation, the entry speed was 13.10
wpm for the Semantic keyboard. This is 14% higher than the rate of 11.54
for the AZERTY keyboard. The difference was statistically significant (F1,10 =
21.12, p = .005).

The average word entry speed shows that Semantic Keyboard works well when
the system predicted the most likely characters. Figure 1 shows the entry speed
by sentence. The effect of the Semantic Keyboard is immediate. The Semantic
Keyboard does not require learning, even if the improvement grows lightly during
the first sentences.

5.3 Accuracy

During entry, when the current character differed from the expected character,
an error was recorded. The error rate was obtained by dividing the number of
errors by the number of characters. The number of errors was computed using the
MSD method [5],[11]. The error rate was 1.3% for the Semantic Keyboard and
0.95% with the AZERTY keyboard. This difference was not significant (F1,10 =
4.204, p = .065). Overall, error rates were below 3% which is generally acceptable
for text input.



200 M. Raynal, I.S. MacKenzie, and B. Merlin

Fig. 1. Entry speed by keyboard and phrases

5.4 User Satisfaction

Responses were rated on a 7-point Likert scale, with 1 the least favorable re-
sponse and 7 most favorable. The questionnaire solicited responses about com-
fort, fatigue, effort, accuracy and speed perception for the both keyboard (see
Fig. 2).

Fig. 2. Results of the questionnaire. A response of 7 is most-favorable, and 1 least-
favorable.

The opinion of participants corroborates the quantitative results. We observed
the following: On the one hand, the Semantic Keyboard is faster than the AZ-
ERTY keyboard. On the other hand, the AZERTY keyboard is more accurate
than the Semantic Keyboard. Another important finding is that participants



Semantic Keyboard: Fast Movements between Keys of a Soft Keyboard 201

rated the Semantic Keyboard less tiring than the AZERTY keyboard (”Fatigue”
in Fig. 2). This information is important because motor-impaired users, who are
often forced to use a soft keyboard, often suffer from fatigue during text input.

6 Case Study with Motor-Disabled Person

To verify the relevance of these initial results for the target population, we con-
ducted a case study with a motor disabled person suffering from muscular dystro-
phy. The subject conducted the same experiment as the able-bodied participants
but with fewer phrases to copy because of anticipated fatigue.

We draw two conclusions from the case study: First, the participant had more
difficulty to handle the mouse pointer. As a result, he traveled more distance with
the mouse pointer to type a word: With AZERTY keyboard, the movement
distance was 35% less for able-bodied persons than the motor-disabled person
(225 pixels versus 346). Therefore, he entered text slower than the able-bodied
participants (6.58 wpm versus 11.54 wpm).

The other important observation is that the results obtained in the first ex-
periment were confirmed in the case study. Indeed, the distance travelled by
the pointer decreases 30% using Semantic Keyboard (244 pixels). This decrease
causes an increase of the text input speed of 15%. The speed with the Semantic
Keyboard was 7.59 wpm and with the regular keyboard 6.58 wpm.

7 Conclusion

The Semantic Keyboard presents a technique that uses character prediction to
alter the cursor speed without changing the appearance of the keyboard. It has
the advantage of character prediction without disturbing the user. The technique
reduces the distance covered by the cursor but does not reduce the input time.
In an experiment, the entry speed was about 14% higher after the first character
in a word for the Semantic Keyboard compared to an AZERTY keyboard.

The experiment showed that the semantic pointing could work well in concert
with a robust character prediction system. Since the Semantic Keyboard can be
effective for text input, we expect to improve the prediction system so it can
also be used at the beginning of the word. As well, the system should consider
accents and punctuation in order to offer a comprehensive keyboard suitable for
everyday tasks.

References

1. Aulagner, G., François, R., Martin, B., Michel, D., Raynal, M.: Floodkey: Increas-
ing software keyboard keys by reducing needless ones without occultation. In: Proc.
ACS 2010, pp. 412–417. WSEAS (2010)

2. Badr, G., Raynal, M.: Evaluation of wordTree system with motor disabled users.
In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part
II. LNCS, vol. 6180, pp. 104–111. Springer, Heidelberg (2010)



202 M. Raynal, I.S. MacKenzie, and B. Merlin

3. Blanch, R., Guiard, Y., Beaudouin-Lafon, M.: Semantic pointing: Improving target
acquisition with control-display ratio adaptation. In: Proc. CHI 2004, pp. 519–526.
ACM (2004)

4. Fitts, P.M.: The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology 74, 381–391 (1954)

5. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady 10, 707 (1966)

6. MacKenzie, I.S., Zhang, S.X.: The design and evaluation of a high-performance
soft keyboard. In: Proc. CHI 1999, pp. 25–31. ACM (1999)

7. Masui, T.: An efficient text input method for pen-based computers. In: Proc. CHI
1998, pp. 328–335. ACM (1998)

8. Merlin, B., Raynal, M.: Evaluation of SpreadKey system with motor impaired
users. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP
2010, Part II. LNCS, vol. 6180, pp. 112–119. Springer, Heidelberg (2010)

9. Raynal, M., Vigouroux, N.: Genetic algorithm to generate optimized soft keyboard.
In: Extended Abstracts Proc. CHI 2005, pp. 1729–1732. ACM (2005)

10. Raynal, M., Vigouroux, N.: KeyGlasses: Semi-transparent keys to optimize text
input on virtual keyboard. In: Proc. AAATE 2005, pp. 713–717. IOS Press (2005)

11. Soukoreff, R.W., MacKenzie, I.S.: Measuring errors in text entry tasks: An appli-
cation of the Levenshtein string distance statistic. In: Extended Abstracts Proc.
CHI 2001, pp. 319–320. ACM (2001)

12. Yamada, H.: A historical study of typewriters and typing methods, from the posi-
tion of planning Japanese parallels. Journal of Information Processing 2, 175–202
(1980)

13. Zhai, S., Hunter, M., Smith, B.A.: The Metropolis keyboard: An exploration of
quantitative techniques for virtual keyboard design. In: Proc. UIST 2000, pp. 119–
128. ACM (2000)


	Semantic Keyboard: Fast Movementsbetween Keys of a Soft Keyboard
	1 Introduction
	2 Use of Character Prediction Systems
	3 Semantic Keyboard
	3.1 Principle
	3.2 Implementation

	4 Method
	4.1 Hypothesis
	4.2 Participants
	4.3 Apparatus
	4.4 Procedure
	4.5 Design

	5 Results and Discussion
	5.1 Distance
	5.2 Entry Speed
	5.3 Accuracy
	5.4 User Satisfaction

	6 Case Study with Motor-Disabled Person
	7 Conclusion
	References




